

CE/EMC TEST REPORT

Applicant: Coolgear Inc

Address: 5120 110th Ave N Clearwater FL 33760 U.S.A

Manufacturer: Coolgear Inc

Address: 5120 110th Ave N Clearwater FL 33760 U.S.A

EUT: USB Type-C PD Charger

Trademark: coolgear

Model Number: CG-PD99PPS, WTF-PD99UL

Test Date: Dec. 16, 2024 - Dec. 24, 2024

Date of Report: Dec. 24, 2024

Report No.: SiCT2412161861E

Test Result: The equipment under test was found to be compliance with the

requirements of the standards applied.

Test Procedure Used:

EMI : EN 55032:2015/A1:2020

EN IEC 61000-3-2:2019/A1:2021, EN 61000-3-3:2013/A2:2021

EMS : EN 55035:2017+A11:2020

EN 61000-4-2:2009, EN IEC 61000-4-3:2020, EN 61000-4-4:2012, EN 61000-4-5:2014+A1:2017, EN 61000-4-6:2014/AC:2015. EN IEC 61000-4-11:2020

Compiled by: Reviewed by:

13 . Voorg

Daisy Wei Sky Wang


Andy Wang (Manager

Report No.: SiCT2412161861E

Andy Wang/Manager

This test report is based on a single evaluation of one sample of above mentioned products. It is not permitted to be duplicated in extracts without written approval of Shenzhen SiCT Technology Co., Ltd.

Test report E-mail: info@sict-lab.com.cn Web: www.sict-lab.com.cn Page 1 of 38

TABLE OF CONTENT

Test Report Declaration	Page
1. GENERAL INFORMATION	4
1.1. Description of Device (EUT)	4
1.2. Tested System Details	
1.3. Test Uncertainty	
2. TEST INSTRUMENT USED	5
3. CONDUCTED EMISSION AT THE MAINS TERMINALS TEST	8
3.1. Block Diagram Of Test Setup	8
3.2. Test Standard	
3.3. Power Line Conducted Emission Limit	
3.4. EUT Configuration on Test	
3.5. Operating Condition of EUT	
3.7. Test Result	
4. RADIATION EMISSION TEST	
4.1. Block Diagram of Test Setup	
4.2. Test Standard	
4.3. Radiation Limit	
4.4. EUT Configuration on Test	10
4.5. Operating Condition of EUT	
4.6. Test Procedure	
4.7. Test Result	
5. HARMONIC CURRENT EMISSION TEST	
5.1. Block Diagram of Test Setup	
5.2. Test Standard	
5.4. Test Procedure	
5.5. Test Results	
6. VOLTAGE FLUCTUATIONS & FLICKER TEST	
6.1. Block Diagram of Test Setup	
6.2. Test Standard	
6.3. Operating Condition of EUT	19
6.4. Test Procedure	
6.5. Test Results	
7. ELECTROSTATIC DISCHARGE IMMUNITY TEST	
7.1. Block Diagram of Test Setup	
7.2. Test Standard	
7.3. Severity Levels and Performance Criterion	
7.5. Operating Condition of EUT	
7.6. Test Procedure	
7.7. Test Results	
8. RF FIELD STRENGTH SUSCEPTIBILITY TEST	23
8.1. Block Diagram of Test Setup	
3	

Shenzhen SiCT Technology Co., Ltd	Shenzhen	SiCT	Technology	Co	Ltd
-----------------------------------	----------	-------------	------------	----	-----

IC I Lab	Shenzhen SiCT Technology Co., Ltd.	Report No.: SiCT2412161861E
8.2. Test Standard		
8.3. Severity Levels a	nd Performance Criterion	23
	n on Test	
	on of EUT	
9. ELECTRICAL FAS	T TRANSIENT/BURST IMMUNITY TES	ST 26
	EUT Test Setup	
<u> </u>	nd Performance Criterion	
_	n on Test	
	on of EUT	
	of EUT Test Setup	
	and Darfamana Critarian	
	and Performance Criterion	
	ition of EUT	
	ENTS SUSCEPTIBILITY TEST	
	of EUT Test Setup	
	and Performance Criterion	
	on on Test	
11.5. Operating Condi	tion of EUT	
11.6. Test Procedure .		31
11.7. Test Result		
12. VOLTAGE DIPS	AND INTERRUPTIONS TEST	
12.1. Block Diagram o	of EUT Test Setup	
12.2. Test Standard		32
	and Performance Criterion	
_	on on Test	
	ition of EUT	
	PHS	
14. EUT TEST SETU	P PHOTOGRAPHS	

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT : USB Type-C PD Charger

Trademark : coolgear

Model Number : CG-PD99PPS, WTF-PD99UL

1.2. Tested System Details

None.

1.3. Test Uncertainty

Conducted Emission

Uncertainty

: ±2.66dB

Radiated Emission Uncertainty: ±4.26dB

Test report E-mail: info@sict-lab.com.cn Web: www.sict-lab.com.cn Page 4 of 38

2. TEST INSTRUMENT USED

For Conducted Emission at the mains terminals Test

Conducted Emission Test (A site)						
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.	
843 Shielded Room	ChengYu	843 Room	843	Dec. 26, 2023	Dec. 25, 2024	
EMI Receiver	R&S	ESCI	101421	Dec. 26, 2023	Dec. 25, 2024	
LISN	SCHWARZB ECK	NSLK8127	812779	Dec. 26, 2023	Dec. 25, 2024	
Pulse Limiter	R&S	ESH3-Z2	100681	Dec. 26, 2023	Dec. 25, 2024	
843 Cable 1#	FUJIKURA	843C1#	001	Dec. 26, 2023	Dec. 25, 2024	

For Disturbance Power Test

Conducted Emission Test (A site)						
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.	
EMI Receiver	R&S	ESCI	101421	Dec. 26, 2023	Dec. 25, 2024	
Power Clamp	LUTHI	MDS21	4293	Dec. 26, 2023	Dec. 25, 2024	
Attenuator	R&S	ESH3-Z2	021E	Dec. 26, 2023	Dec. 25, 2024	
843 Cable 2#	FUJIKURA	843C1#	002	Dec. 26, 2023	Dec. 25, 2024	

For Radiated Emission Test

Radiation Emission Test (966 chamber)						
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.	
966 chamber	ChengYu	966 Room	966	Dec. 26, 2023	Dec. 25, 2024	
Spectrum Analyzer	Agilent	E4407B	MY45109572	Dec. 26, 2023	Dec. 25, 2024	
Amplifier	Schwarzbeck	BBV9743	9743-119	Dec. 26, 2023	Dec. 25, 2024	
Amplifier	Schwarzbeck	BBV9718	9718-270	Dec. 26, 2023	Dec. 25, 2024	
Log-periodic Antenna	Schwarzbeck	VULB9160	VULB9160-3 369	Dec. 26, 2023	Dec. 25, 2024	
EMI Receiver	R&S	ESCI	101421	Dec. 26, 2023	Dec. 25, 2024	
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1275	Dec. 26, 2023	Dec. 25, 2024	
966 Cable 1#	CHENGYU	966	004	Dec. 26, 2023	Dec. 25, 2024	
966 Cable 2#	CHENGYU	966	003	Dec. 26, 2023	Dec. 25, 2024	

Test report E-mail: info@sict-lab.com.cn Web: www.sict-lab.com.cn Page 5 of 38

For Harmonic & Flicker Test

For Harmonic / Flicker Test (A site)						
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.	
Harmonic / Flicker Analyzer	KIKUSUI	KHA1000	VA002445	Dec. 26, 2023	Dec. 25, 2024	
AC Power Supply	KIKUSUI	PCR4000M	UK001879	Dec. 26, 2023	Dec. 25, 2024	
Line Impedance network	KIKUSUI	LIN1020JF	UL001611	Dec. 26, 2023	Dec. 25, 2024	

For Electrostatic Discharge Immunity Test

For Electrostatic Discharge Immunity Test (A site)						
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.	
ESD Tester	KIKISUI	KES4201A	UH002321	Dec. 26, 2023	Dec. 25, 2024	

For RF Field Strength Susceptibility Test(SMQ)

10111111	To the field offerigit oddocoptionity rest(office)							
	For RF Field Strength Susceptibility Test (SMQ site)							
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.			
Signal Generator	HP	8648A	3625U00573	Dec. 26, 2023	Dec. 25, 2024			
Amplifier	A&R	500A100	17034	Dec. 26, 2023	Dec. 25, 2024			
Amplifier	A&R	100W/1000M1	17028	Dec. 26, 2023	Dec. 25, 2024			
Audio Analyzer (20Hz~1GHz)	Panasonic	2023B	202301/428	Dec. 26, 2023	Dec. 25, 2024			
Isotropic Field Probe	A&R	FP2000	16755	Dec. 26, 2023	Dec. 25, 2024			
Antenna	EMCO	3108	9507-2534	Dec. 26, 2023	Dec. 25, 2024			
Log-periodic Antenna	A&R	AT1080	16812	Dec. 26, 2023	Dec. 25, 2024			

For Electrical Fast Transient /Burst Immunity Test

For Electrical Fast Transient/Burst Immunity Test (A site)						
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.	
Burst Tester	Prima	EFT61004AG	PR14054467	Dec. 26, 2023	Dec. 25, 2024	
Coupling Clamp	Prima	EFT61004AG	009E	Dec. 26, 2023	Dec. 25, 2024	

Test report E-mail: info@sict-lab.com.cn Web: www.sict-lab.com.cn Page 6 of 38

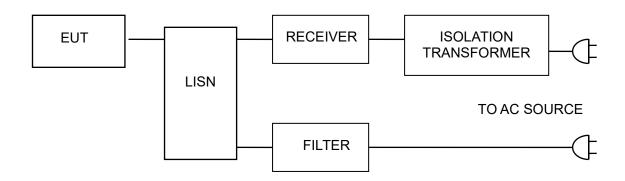
For Surge Test

For Surge Test (A site)						
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.	
Burst Tester	Prima	EFT61004AG	PR14054467	Dec. 26, 2023	Dec. 25, 2024	

For Injected Currents Susceptibility Test

For Injected Currents Susceptibility Test (A site)							
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.		
C/S Test System	SCHLODER	CDG600	126B1281	Dec. 26, 2023	Dec. 25, 2024		
CDN	SCHLODER	CDN-M2+3	A2210320/20 15	Dec. 26, 2023	Dec. 25, 2024		
Injection Clamp	SCHLOBER	EMCL-20	132A1214/20 15	Dec. 26, 2023	Dec. 25, 2024		

For Voltage Dips Interruptions Test


For Voltage Dips Interruptions Test (A site)									
Equipment	Equipment Manufacturer Model# Serial# Last Cal. Next Cal.								
Dips Tester	Prima	DRP61011AG	PR14086284	Dec. 26, 2023	Dec. 25, 2024				

Test report E-mail: info@sict-lab.com.cn Web: www.sict-lab.com.cn Page 7 of 38

3. CONDUCTED EMISSION AT THE MAINS TERMINALS TEST

3.1.Block Diagram Of Test Setup

3.2. Test Standard

EN 55032

3.3. Power Line Conducted Emission Limit

Frequency	Limits	dB(V)
MHz	Quasi-peak Level	Average Level
0.15 ~ 0.50	66 ~ 56*	56 ~ 46*
0.50 ~ 5.00	56	46
5.00 ~ 30.00	60	50

Notes: 1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

3.4.EUT Configuration on Test

The following equipments are installed on conducted emission test to meet EN 55032 requirement and operating in a manner which tends to maximize its emission characteristics in a normal application.

3.5. Operating Condition of EUT

- 3.5.1 Setup the EUT and simulators as shown in Section 3.1.
- 3.5.2 Turn on the power of all equipments.
- 3.5.3 Let the EUT work in test modes and test it.

Test report E-mail: info@sict-lab.com.cn Web: www.sict-lab.com.cn Page 8 of 38

3.6. Test Procedure

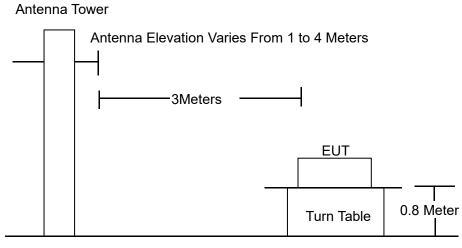
The EUT is put on the ground and connected to the AC mains through a Artificial Mains Network (AMN). This provided a 50ohm coupling impedance for the tested equipments. Both sides of AC line are checked to find out the maximum conducted emission levels according to the **EN 55032** regulations during conducted emission test.

Report No.: SiCT2412161861E

The bandwidth of the test receiver (R&S Test Receiver ESCI) is set at 10KHz.

The frequency range from 150 KHz to 30 MHz is investigated.

3.7.Test Result


The EUT is powered by host, no requirements for this item.

Test report E-mail: info@sict-lab.com.cn Web: www.sict-lab.com.cn Page 9 of 38

4. RADIATION EMISSION TEST

4.1. Block Diagram of Test Setup

Ground Plane

4.2. Test Standard

EN 55032

4.3. Radiation Limit

Frequency MHz	Distance (Meters)	Field Strengths Limits dB(V)/m
30 ~ 230	3	40.0
230 ~ 1000	3	47.0

Remark:

- (1) Emission level (dB(V)/m) = 20 log Emission level (V/m)
- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) Distance refers to the distance in meters between the measuring instrument, antenna and the closed point of any part of the device or system.

4.4. EUT Configuration on Test

The EN 55032 regulations test method must be used to find the maximum emission during radiated emission test.

The configuration of EUT is the same as used in conducted emission test. Please refer to Section 2.2.

Test report E-mail: info@sict-lab.com.cn Web: www.sict-lab.com.cn Page 10 of 38

4.5. Operating Condition of EUT

Same as conducted emission test, which is listed in Section 2.2 except the test set up replaced as Section 4.1.

Report No.: SiCT2412161861E

4.6. Test Procedure

The EUT and its simulators are placed on a turned table that is 0.8 meter above the ground. The turned table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna that is mounted on the antenna tower. The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated biconical and log periodical antenna) is used as receiving antenna. Both horizontal and vertical polarization of the antenna is set on test. In order to find the maximum emission levels, the interface cable must be manipulated according to EN 55032 on radiated emission test.

The bandwidth setting on the field strength meter (R&S Test Receiver ESCI) is set at 120KHz.

The frequency range from 30MHz to 1000MHz is checked.

4.7. Test Result

PASS

Please refer to the following page.

Test report E-mail: info@sict-lab.com.cn Web: www.sict-lab.com.cn Page 11 of 38

Radiation Emission Test Data								
Temperature:	24.5 ℃	Relative Humidity:	54%					
Pressure:	1009hPa	Phase :	Horizontal					
Test Voltage:	DC 24V	Test Mode:	Type-C 5V5A+Type-A 5V3A					

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		36.0007	25.49	-12.14	13.35	40.00	-26.65	QP			
2		77.8654	36.39	-14.97	21.42	40.00	-18.58	QP			
3		89.5899	37.72	-14.97	22.75	40.00	-17.25	QP			
4		137.4202	35.89	-11.47	24.42	40.00	-15.58	QP			
5		446.4141	35.72	-4.70	31.02	47.00	-15.98	QP			
6	*	875.2470	28.12	4.09	32.21	47.00	-14.79	QP			

Test report E-mail: info@sict-lab.com.cn Web: www.sict-lab.com.cn Page 12 of 38

Radiation Emission Test Data								
Temperature:	24.5 ℃	Relative Humidity:	54%					
Pressure:	1009hPa	Phase :	Vertical					
Test Voltage:	DC 24V	Test Mode:	Type-C 5V5A+Type-A 5V3A					



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		60.0691	30.28	-12.49	17.79	40.00	-22.21	QP			
2		78.4133	40.03	-15.05	24.98	40.00	-15.02	QP			
3		136.4598	28.87	-11.54	17.33	40.00	-22.67	QP			
4		334.8589	29.17	-7.94	21.23	47.00	-25.77	QP			
5		454.3100	28.56	-4.59	23.97	47.00	-23.03	QP			
6	*	875.2470	33.94	4.09	38.03	47.00	-8.97	QP			

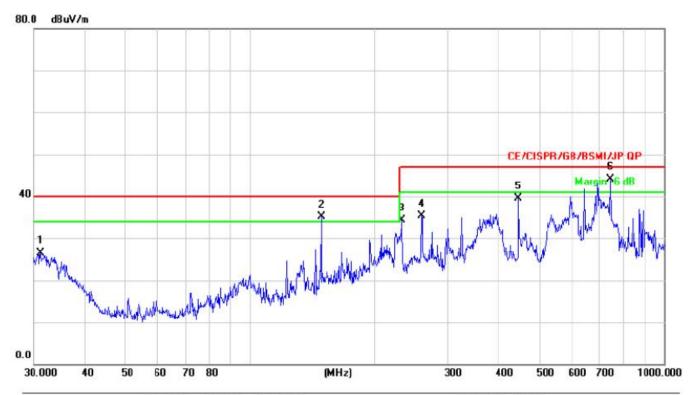
Test report E-mail: info@sict-lab.com.cn Web: www.sict-lab.com.cn Page 13 of 38

Radiation Emission Test Data									
Temperature:	24.5 ℃	Relative Humidity:	54%						
Pressure:	1009hPa	Phase :	Horizontal						
Test Voltage:	DC 24V	Test Mode:	Type-C 9V3A+Type-A 9V3A						

Mk.	Freq.	Freq.	Freq.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height		
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment				
1	32.0667	43.47	-8.31	35.16	40.00	-4.84	QP						
	71.8320	41.01	-15.19	25.82	40.00	-14.18	QP						
	107.8877	41.11	-15.75	25.36	40.00	-14.64	QP						
*	216.0240	51.59	-15.75	35.84	40.00	-4.16	QP						
100	452.7197	48.91	-8.97	39.94	47.00	-7.06	QP						
1	774.1584	44.12	-2.93	41.19	47.00	-5.81	QP						
	*	MHz 1 32.0667 71.8320 107.8877 * 216.0240 452.7197	Mk. Freq. Level MHz dBuV 1 32.0667 43.47 71.8320 41.01 107.8877 41.11 * 216.0240 51.59 452.7197 48.91	Mk. Freq. Level Factor MHz dBuV dB/m 1 32.0667 43.47 -8.31 71.8320 41.01 -15.19 107.8877 41.11 -15.75 * 216.0240 51.59 -15.75 452.7197 48.91 -8.97	Mk. Freq. Level Factor MBuV ment MBuV/m 1 32.0667 43.47 -8.31 35.16 71.8320 41.01 -15.19 25.82 107.8877 41.11 -15.75 25.36 * 216.0240 51.59 -15.75 35.84 452.7197 48.91 -8.97 39.94	Mk. Freq. Level Factor ment Limit MHz dBuV dBuV dBuV/m dBuV/m dBuV/m I 32.0667 43.47 -8.31 35.16 40.00 71.8320 41.01 -15.19 25.82 40.00 107.8877 41.11 -15.75 25.36 40.00 * 216.0240 51.59 -15.75 35.84 40.00 452.7197 48.91 -8.97 39.94 47.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dBuV dBuV/m dBuV/m dBuV/m dB I 32.0667 43.47 -8.31 35.16 40.00 -4.84 71.8320 41.01 -15.19 25.82 40.00 -14.18 107.8877 41.11 -15.75 25.36 40.00 -14.64 * 216.0240 51.59 -15.75 35.84 40.00 -4.16 452.7197 48.91 -8.97 39.94 47.00 -7.06	Mk. Freq. Level Factor ment Limit Over MHz dBuV dBuV dBuV/m dBuV/m dBuV/m dB Detector I 32.0667 43.47 -8.31 35.16 40.00 -4.84 QP 71.8320 41.01 -15.19 25.82 40.00 -14.18 QP 107.8877 41.11 -15.75 25.36 40.00 -14.64 QP * 216.0240 51.59 -15.75 35.84 40.00 -4.16 QP 452.7197 48.91 -8.97 39.94 47.00 -7.06 QP	Mk. Freq. Level Factor Ment Limit Over Height MHz dBuV dBuV dBuV/m dBuV/m dB Detector cm I 32.0667 43.47 -8.31 35.16 40.00 -4.84 QP 71.8320 41.01 -15.19 25.82 40.00 -14.18 QP 107.8877 41.11 -15.75 25.36 40.00 -14.64 QP * 216.0240 51.59 -15.75 35.84 40.00 -4.16 QP 452.7197 48.91 -8.97 39.94 47.00 -7.06 QP	Mk. Freq. Level Factor ment Limit Over Height Degree MHz dBuV dBuV dBuV/m dBuV/m dB Detector cm degree I 32.0667 43.47 -8.31 35.16 40.00 -4.84 QP 71.8320 41.01 -15.19 25.82 40.00 -14.18 QP 107.8877 41.11 -15.75 25.36 40.00 -14.64 QP * 216.0240 51.59 -15.75 35.84 40.00 -4.16 QP 452.7197 48.91 -8.97 39.94 47.00 -7.06 QP			

Test report E-mail: info@sict-lab.com.cn Web: www.sict-lab.com.cn Page 14 of 38

Radiation Emission Test Data								
Temperature:	24.5 ℃	Relative Humidity:	54%					
Pressure:	1009hPa	Phase :	Vertical					
Test Voltage:	DC 24V	LIEST MIDDE:	Type-C 9V3A+Type-A 9V3A					



Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
	30.0000	38.60	-8.02	30.58	40.00	-9.42	QP			
	89.9047	40.88	-17.51	23.37	40.00	-16.63	QP			
	216.0240	47.15	-15.75	31.40	40.00	-8.60	QP			
	444.8514	47.53	-9.12	38.41	47.00	-8.59	QP			
	595.1329	45.70	-5.83	39.87	47.00	-7.13	QP			
*	768.7481	43.29	-3.04	40.25	47.00	-6.75	QP			
		MHz 30.0000 89.9047 216.0240 444.8514 595.1329	Mk. Freq. Level MHz dBuV 30.0000 38.60 89.9047 40.88 216.0240 47.15 444.8514 47.53 595.1329 45.70	Mk. Freq. Level Factor MHz dBuV dB/m 30.0000 38.60 -8.02 89.9047 40.88 -17.51 216.0240 47.15 -15.75 444.8514 47.53 -9.12 595.1329 45.70 -5.83	Mk. Freq. Level Factor ment MHz dBuV dB/m dBuV/m 30.0000 38.60 -8.02 30.58 89.9047 40.88 -17.51 23.37 216.0240 47.15 -15.75 31.40 444.8514 47.53 -9.12 38.41 595.1329 45.70 -5.83 39.87	Mk. Freq. Level Factor ment Limit MHz dBuV dBuV dBuV/m dBuV/m 30.0000 38.60 -8.02 30.58 40.00 89.9047 40.88 -17.51 23.37 40.00 216.0240 47.15 -15.75 31.40 40.00 444.8514 47.53 -9.12 38.41 47.00 595.1329 45.70 -5.83 39.87 47.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dBuV dBuV/m dBuV/m dBuV/m dB 30.0000 38.60 -8.02 30.58 40.00 -9.42 89.9047 40.88 -17.51 23.37 40.00 -16.63 216.0240 47.15 -15.75 31.40 40.00 -8.60 444.8514 47.53 -9.12 38.41 47.00 -8.59 595.1329 45.70 -5.83 39.87 47.00 -7.13	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB _m dBuV/m dBuV/m dB Detector 30.0000 38.60 -8.02 30.58 40.00 -9.42 QP 89.9047 40.88 -17.51 23.37 40.00 -16.63 QP 216.0240 47.15 -15.75 31.40 40.00 -8.60 QP 444.8514 47.53 -9.12 38.41 47.00 -8.59 QP 595.1329 45.70 -5.83 39.87 47.00 -7.13 QP	Mk. Freq. Level Factor ment Limit Over Height MHz dBuV dBuV dBuV/m dBuV/m dB Detector cm 30.0000 38.60 -8.02 30.58 40.00 -9.42 QP 89.9047 40.88 -17.51 23.37 40.00 -16.63 QP 216.0240 47.15 -15.75 31.40 40.00 -8.60 QP 444.8514 47.53 -9.12 38.41 47.00 -8.59 QP 595.1329 45.70 -5.83 39.87 47.00 -7.13 QP	Mk. Freq. Level Factor ment Limit Over Height Degree MHz dBuV dBm dBuV/m dBuV/m dB Detector cm degree 30.0000 38.60 -8.02 30.58 40.00 -9.42 QP 89.9047 40.88 -17.51 23.37 40.00 -16.63 QP 216.0240 47.15 -15.75 31.40 40.00 -8.60 QP 444.8514 47.53 -9.12 38.41 47.00 -8.59 QP 595.1329 45.70 -5.83 39.87 47.00 -7.13 QP

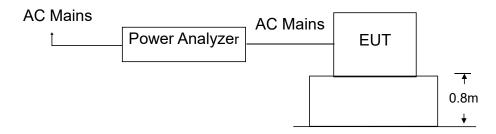
Test report E-mail: info@sict-lab.com.cn Web: www.sict-lab.com.cn Page 15 of 38

Radiation Emission Test Data									
Temperature:	24.5 ℃	Relative Humidity:	54%						
Pressure:	1009hPa	Phase :	Horizontal						
Test Voltage:	DC 24V	Test Mode:	Type-C 20V4.69A+Type-A 12V3A						

No. N	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		31.1798	38.93	-12.47	26.46	40.00	-13.54	QP			
2	1	148.4410	45.74	-10.72	35.02	40.00	-4.98	QP			
3		232.5318	45.21	-10.95	34.26	47.00	-12.74	QP			
4		259.2338	45.10	-9.81	35.29	47.00	-11.71	QP			
5		444.8514	44.32	-4.73	39.59	47.00	-7.41	QP			
6	*	742.2587	42.56	1.59	44.15	47.00	-2.85	QP			

Test report E-mail: info@sict-lab.com.cn Web: www.sict-lab.com.cn Page 16 of 38

Radiation Emission Test Data					
Temperature:	24.5 ℃	Relative Humidity:	54%		
Pressure:	1009hPa	Phase :	Vertical		
Test Voltage:	DC 24V	Test Mode:	Type-C 20V4.69A+Type-A 12V3A		


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		46.1779	39.92	-12.32	27.60	40.00	-12.40	QP			
2	*	148.4410	45.96	-10.72	35.24	40.00	-4.76	QP			
3		260.1444	41.33	-9.80	31.53	47.00	-15.47	QP			
4	- 1	444.8514	45.14	-4.73	40.41	47.00	-6.59	QP			
5	Ī	541.3725	44.04	-2.96	41.08	47.00	-5.92	QP			
6		691.9867	39.70	0.85	40.55	47.00	-6.45	QP			

Test report E-mail: info@sict-lab.com.cn Web: www.sict-lab.com.cn Page 17 of 38

5. HARMONIC CURRENT EMISSION TEST

5.1. Block Diagram of Test Setup

5.2. Test Standard

EN 61000-3-2

5.3. Operating Condition of EUT

- 5.1.1 Setup the EUT as shown in Section 5.1.
- 5.1.2 Turn on the power of all equipments.
- 5.1.3 Let the EUT work in test mode and test it.

5.4. Test Procedure

The power cord of the EUT is connected to the output of the test system. Turn on the power of the EUT and use the test system to test the harmonic current level.

5.5. Test Results

The EUT is powered by host, no requirements for this item.

Test report E-mail: info@sict-lab.com.cn Web: www.sict-lab.com.cn Page 18 of 38

6. VOLTAGE FLUCTUATIONS & FLICKER TEST

6.1.Block Diagram of Test Setup

Same as Section 6.1.

6.2. Test Standard

EN 61000-3-3

6.3. Operating Condition of EUT

Same as Section 5.3.. The power cord of the EUT is connected to the output of the test system. Turn on the power of the EUT and use the test system to test the harmonic current level.

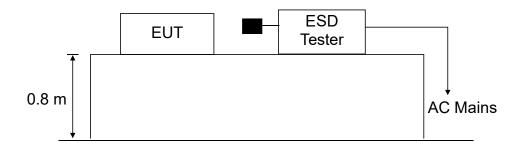
Flicker Test Limit

Test items	Limits
Pst	1.0
dc	3.3%
Tmax	4.0%
dt	Not exceed 3.3% for
	500ms

6.4. Test Procedure

The power cord of the EUT is connected to the output of the test system. Turn on the power of the EUT and use the test system to test the harmonic current level.

6.5. Test Results


The EUT is powered by host, no requirements for this item.

Test report E-mail: info@sict-lab.com.cn Web: www.sict-lab.com.cn Page 19 of 38

7. ELECTROSTATIC DISCHARGE IMMUNITY TEST

7.1.Block Diagram of Test Setup

Report No.: SiCT2412161861E

7.2. Test Standard

EN 55035, EN 61000-4-2

Severity Level: 3 / Air Discharge:±8KV Level: 2 / Contact Discharge:±4KV

7.3. Severity Levels and Performance Criterion

7.3.1 Severity level

Level	Test Voltage Contact Discharge (KV)	Test Voltage Air Discharge (KV)
1.	±2	±2
2.	±4	±4
3.	±6	±8
4.	±8	±15
Х	Special	Special

7.3.2 Performance criterion: B

- **A.** The apparatus shall continue to operate as intended during the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer, when the apparatus is used as i
- **B.** The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer, when the apparatus is used as intended. During the test, degradation of performance is allowed, however, no change of actual operating state or stored data is allowed. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and from what the user may reasonably expect from the apparatus if used as intended.

Test report E-mail: info@sict-lab.com.cn Web: www.sict-lab.com.cn Page 20 of 38

C. Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of the controls, or by any operation specified in the instructions for use.

Report No.: SiCT2412161861E

7.4. EUT Configuration

The following equipments are installed on Electrostatic Discharge Immunity test to meet EN 55035, EN 61000-4-2, requirement and operating in a manner which tends to maximize its emission characteristics in a normal application. The configuration of EUT is the same as used in conducted emission test. Please refer to Section 2.4.

7.5. Operating Condition of EUT

Same as conducted emission measurement, which is listed in Section 3.5 except the test setup replaced by Section 7.1.2.

7.6. Test Procedure

7.6.1 Air Discharge:

This test is done on a non-conductive surface. The round discharge tip of the discharge electrode shall be approached as fast as possible to touch the EUT. After each discharge, the discharge electrode shall be removed from the EUT. The generator is then re-triggered for a new single discharge and repeated 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed.

7.6.2 Contact Discharge:

All the procedure shall be same as Section 7.6.1. Except that the tip of the discharge electrode shall touch the EUT before the discharge switch is operated.

7.6.3 Indirect discharge for horizontal coupling plane

At least 10 single discharges (in the most sensitive polarity) shall be applied at the front edge of each HCP opposite the center point of each unit (if applicable) of the EUT and 0.1m from the front of the EUT. The long axis of the discharge electrode shall be in the plane of the HCP and perpendicular to its front edge during the discharge.

7.6.4 Indirect discharge for vertical coupling plane

At least 10 single discharges (in the most sensitive polarity) shall be applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, is placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges shall be applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are complete illuminated.

7.7. Test Results

PASS

Test report E-mail: info@sict-lab.com.cn Web: www.sict-lab.com.cn Page 21 of 38

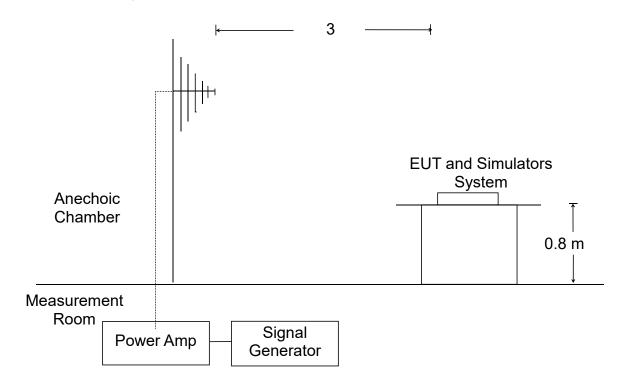
Please refer to the following page.

ESD Test Data						
Temperature:	24.5℃	Humidity:	53%			
Power Supply:	DC 24V	Test Mode:	Type-C 20V4.69A+Type-A 12V3A			

Air Discharge: ± 8KV

Contact Discharge: ± 4KV

Test Points	Air Discharge	Contact Discharge	Performance Criterion	Result
Enclosure	±2,4,8KV	N/A	В	PASS
Slit	±2,4,8KV	N/A	В	PASS
Metal Part	N/A	±2,4 KV	В	PASS
VCP	N/A	±2,4 KV	В	PASS
HCP	N/A	±2,4 KV	В	PASS


Note: N/A

Test report E-mail: info@sict-lab.com.cn Web: www.sict-lab.com.cn Page 22 of 38

8. RF FIELD STRENGTH SUSCEPTIBILITY TEST

8.1. Block Diagram of Test Setup

8.2. Test Standard

EN 55035, EN 61000-4-3

Severity Level 2, 3V / m

8.3. Severity Levels and Performance Criterion

8.3.1. Severity level

Level	Field Strength V/m
1.	1
2.	3
3.	10
X.	Special

8.3.2. Performance criterion: A

- A. The apparatus shall continue to operate as intended during the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer, when the apparatus is used as i
- B, The apparatus shall continue to operate as intended after the test. No

Test report E-mail: info@sict-lab.com.cn Web: www.sict-lab.com.cn Page 23 of 38

degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer, when the apparatus is used as intended. During the test, degradation of performance is allowed, however, no change of actual operating state or stored data is allowed. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and from what the user may reasonably expect from the apparatus if used as intended.

Report No.: SiCT2412161861E

C. Temporary loss of function is allowed, provided the function is selfrecoverable or can be restored by the operation of the controls, or by any operation specified in the instructions for use.

8.4.EUT Configuration on Test

The following equipments are installed on Electrical Fast Transient/Burst Immunity test to meet EN 55035, EN 61000-4-4:2012, requirement and operating in a manner which tends to maximize its emission characteristics in a normal application. The configuration of EUT is the same as used in conducted emission test.

Please refer to Section 3.4.

8.5. Operating Condition of EUT

Same as conducted emission measurement, which is listed in Section 2.5 except the test setup replaced by Section 8.1.

8.6. Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. EUT is set 3 meter away from the transmitting antenna which is mounted on an antenna tower. Both horizontal and vertical polarization of the antenna are set on test. Each of the four sides of EUT must be faced this transmitting antenna and measured individually.

All the scanning conditions are as follows:

	Condition of Test	Remarks
1.	Fielded Strength	3 V/m (Severity Level 2)
2.	Radiated Signal	Modulated
3.	Scanning Frequency	80 – 1000 MHz
	Dwell time of radiated	0.0015 decade/s
5.	Waiting Time	1 Sec.

Test report E-mail: info@sict-lab.com.cn Web: www.sict-lab.com.cn Page 24 of 38

8.7.Test Results

PASS

Please refer to the following page.

		R/S Test D	Data		
Temperature : 25℃		ŀ	Humidity: 53%	6	
Field Strength: 3 V/m		(Criterion: A		
Power Supply: DC 24\	/	F	Frequency Ra	nge: 80	MHz to 1000 MHz
Modulation:	AM	Pulse	none	1 KHz	80%
Test Mode: Type-C 20	V4.69A+T	ype-A 12V3A			
	Frequen	cy Range : 80	0-1000MHz		
Steps	1 %				
	Н	orizontal	Vertical		Result
Front		А	А		Pass
Right		А	А		Pass
Rear		А	А		Pass
Left		Α	Α		Pass
Note: N/A	ı		1	I	

Test report E-mail: info@sict-lab.com.cn Web: www.sict-lab.com.cn Page 25 of 38

9. ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST

9.1.Block Diagram of EUT Test Setup

9.2. Test Standard

EN 55035, EN 61000-4-4

9.3. Severity Levels and Performance Criterion

Severity Level 2 at 1KV, Pulse Rise time & Duration: 5 nS / 50 nS Severity Level:

Open Circuit Output Test Voltage ±10%						
On nower ports	On I/O(Input/Output)					
On power ports	Signal data and control ports					
0.5KV	0.25KV					
1KV	0.5KV					
2KV	1KV					
4KV	2KV					
Special	Special					
	On power ports 0.5KV 1KV 2KV 4KV					

Performance criterion: B

- A. The apparatus shall continue to operate as intended during the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer, when the apparatus is used as i
- B. The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer, when the apparatus is used as intended. During the test, degradation of performance is allowed, however, no change of actual operating state or stored data is allowed. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and from what the user may reasonably expect from the apparatus if used as intended.
- C. Temporary loss of function is allowed, provided the function is selfrecoverable or can be restored by the operation of the controls, or by any operation specified in the instructions for use.

9.4. EUT Configuration on Test

The following equipments are installed on Electrical Fast Transient/Burst Immunity test to meet EN 55035, EN 61000-4-4:2012, requirement and operating in a manner which tends to maximize its emission characteristics in a normal application. The configuration of EUT is the same as used in

Test report E-mail: info@sict-lab.com.cn Web: www.sict-lab.com.cn Page 26 of 38

conducted emission test. Please refer to Section 3.4.

9.5. Operating Condition of EUT

Same as conducted emission measurement, which is listed in Section 2.6 except the test setup replaced by Section 9.1.

Report No.: SiCT2412161861E

9.6. Test Procedure

EUT shall be placed 0.8m high above the ground reference plane which is a min.1m*1m metallic sheet with 0.65mm minimum thickness. This reference ground plane shall project beyond the EUT by at least 0.1m on all sides and the minimum distance between EUT and all other conductive structure, except the ground plane beneath the EUT, shall be more than 0.5m

9.6.1. For input and output AC power ports:

The EUT is connected to the power mains by using a coupling device which couples the EFT interference signal to AC power lines. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 2 minutes.

9.7. Test Results

The EUT is powered by host, no requirements for this item.

Test report E-mail: info@sict-lab.com.cn Web: www.sict-lab.com.cn Page 27 of 38

10. SURGE TEST

10.1. Block Diagram of EUT Test Setup

Report No.: SiCT2412161861E

10.2. Test Standard

EN 55035. EN61000-4-5

10.3. Severity Levels and Performance Criterion

Severity Level: Line to Line, Level 2 at 1KV; Severity Level: Line to Earth, Level 3 at 2KV.

Severity Level	Open-Circuit Test Voltage (KV)
1.	0.5
2.	1.0
3.	2.0
4.	4.0
X.	Special

Performance criterion: B

- A. The apparatus shall continue to operate as intended during the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer, when the apparatus is used as i
- B. The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer, when the apparatus is used as intended. During the test, degradation of performance is allowed, however, no change of actual operating state or stored data is allowed. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and from what the user may reasonably expect from the apparatus if used as intended.
- C. Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of the controls, or by any operation specified in the instructions for use.

10.4. EUT Configuration on Test

The following equipments are installed on Electrical Fast Transient/Burst Immunity test to meet EN 55035, EN61000-4-5:2014, requirement and operating in a manner which tends to maximize its emission characteristics in a normal application

The configuration of EUT is the same as used in conducted emission test.

Please refer to Section 3.4.

10.5. Operating Condition of EUT

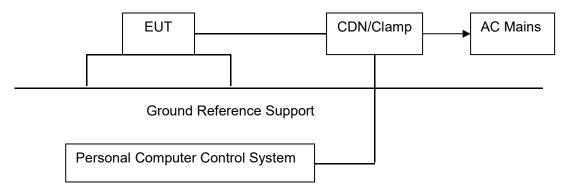
Same as conducted emission measurement, which is listed in Section 2.7 except the test setup replaced by Section 10.1.

Report No.: SiCT2412161861E

10.6. Test Procedure

- 1) Set up the EUT and test generator as shown on section 10.1
- 2) For line to line coupling mode, provide a 1KV 1.2/50us voltage surge (at open-circuit condition) and 8/20us current surge to EUT selected points.
- 3) At least 5 positive and 5 negative (polarity) tests with a maximum 1/min repetition rate are conducted during test.
- 4) Different phase angles are done individually.
- 5) Repeat procedure 2) to 4) except the open-circuit test voltage change from 1KV to 2KV for line to earth coupling mode test.
- 6) Record the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.

10.7. Test Result


The EUT is powered by host, no requirements for this item.

Test report E-mail: info@sict-lab.com.cn Web: www.sict-lab.com.cn Page 29 of 38

11. INJECTED CURRENTS SUSCEPTIBILITY TEST

11.1. Block Diagram of EUT Test Setup

11.2. Test Standard

EN 55035, EN61000-4-6

11.3. Severity Levels and Performance Criterion

Severity Level 2: 3V(rms), 150KHz \sim 80MHz Severity Level:

Level	Field Strength V		
1.	1		
2.	3		
3.	10		
X.	Special		

Performance criterion: A

- A. The apparatus shall continue to operate as intended during the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer, when the apparatus is used as i
- B. The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer, when the apparatus is used as intended. During the test, degradation of performance is allowed, however, no change of actual operating state or stored data is allowed. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and from what the user may reasonably expect from the apparatus if used as intended.
- C. Temporary loss of function is allowed, provided the function is selfrecoverable or can be restored by the operation of the controls, or by any operation specified in the instructions for use.

Test report E-mail: info@sict-lab.com.cn Web: www.sict-lab.com.cn Page 30 of 38

11.4. EUT Configuration on Test

The configuration of EUT is the same as used in conducted emission test. Please refer to Section 2.8.

Report No.: SiCT2412161861E

11.5. Operating Condition of EUT

Same as conducted emission test, which is listed in Section 2.8 except the test set up replaced as Section 11.1.

11.6. Test Procedure

- 1) Set up the EUT, CDN and test generator as shown on section 11.1
- 2) Let EUT work in test mode and measure.
- 3) The EUT and supporting equipments are placed on an insulating support 0.1m high above a ground reference plane. CDN (coupling and decoupling device) is placed on the ground plane at above 0.1-0.3m from EUT. Cables between CDN and EUT are as short as possible, and their height above the ground reference plane shall be between 30 and 50 mm (where possible).
- 4) The disturbance signal described below is injected to EUT through CDN.
- 5) The EUT operates within its operational mode(s) under intended climatic conditions after power on.
- 6) The frequency range is swept from 150KHz to 80MHz using 3V signal level, and with the disturbance signal 80% amplitude modulated with a 1KHz sine wave
- 7) The rate of sweep shall not exceed 1.5×10⁻³ decades/s. Where the frequency is swept incrementally, the step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value.
- 8) Recording the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.

11.7. Test Result


The EUT is powered by host, no requirements for this item.

Test report E-mail: info@sict-lab.com.cn Web: www.sict-lab.com.cn Page 31 of 38

12. VOLTAGE DIPS AND INTERRUPTIONS TEST

12.1. Block Diagram of EUT Test Setup

12.2. Test Standard

EN 55035, EN61000-4-11

12.3. Severity Levels and Performance Criterion

Severity Level:

Input and Output AC Power Ports.

Voltage Dips.

Voltage Interruptions.

Environmental	Test Specification	Units	Performance
Phenomena			Criterion
Voltage Dips	70	% Reduction	С
	25	period	
	40	% Reduction	С
	10	period	C
Voltage	0	% Reduction	C
Interruptions	0.5	period	C

Performance criterion: B, C, C

- A. The apparatus shall continue to operate as intended during the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer, when the apparatus is used as i
- B. The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer, when the apparatus is used as intended. During the test, degradation of performance is allowed, however, no change of actual operating state or stored data is allowed. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and from what the user may reasonably expect from the apparatus if used as intended.
- C. Temporary loss of function is allowed, provided the function is selfrecoverable or can be restored by the operation of the controls, or by any operation specified in the instructions for use.

Test report E-mail: info@sict-lab.com.cn Web: www.sict-lab.com.cn Page 32 of 38

12.4. EUT Configuration on Test

The configuration of EUT is the same as used in conducted emission test. Please refer to Section 2.10.

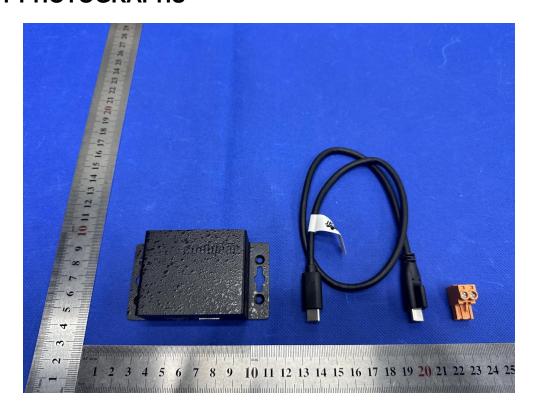
Report No.: SiCT2412161861E

12.5. Operating Condition of EUT

Same as conducted emission test, which is listed in Section 2.10 except the test set up replaced as Section 13.1.

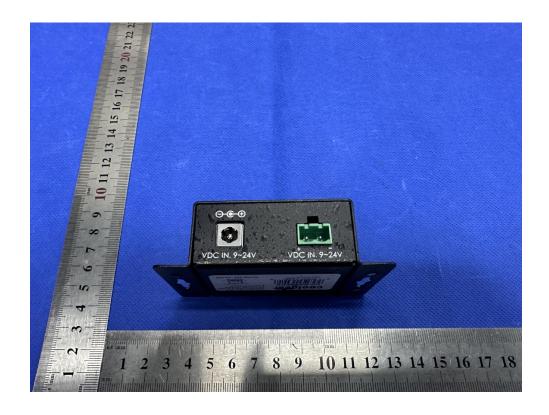
12.6. Test Procedure

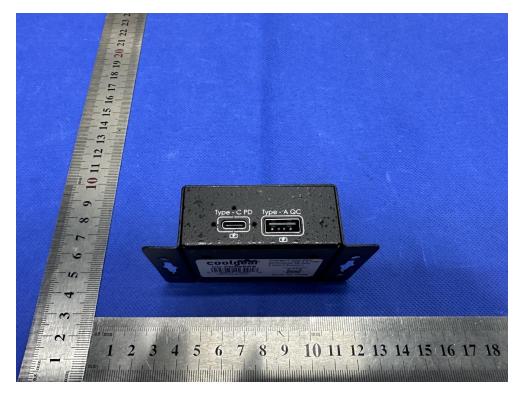
- 1) Set up the EUT and test generator as shown on section 13.1
- 2) The interruption is introduced at selected phase angles with specified duration. There is a 3mins minimum interval between each test event.
- 3) After each test a full functional check is performed before the next test.
- 4) Repeat procedures 2 & 3 for voltage dips, only the level and duration is changed.
- 5) Record any degradation of performance.

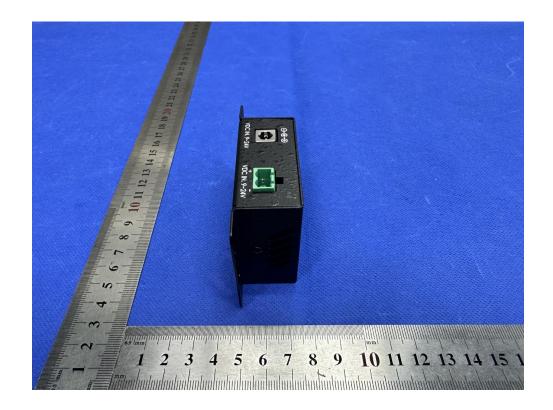

12.7. Test Result

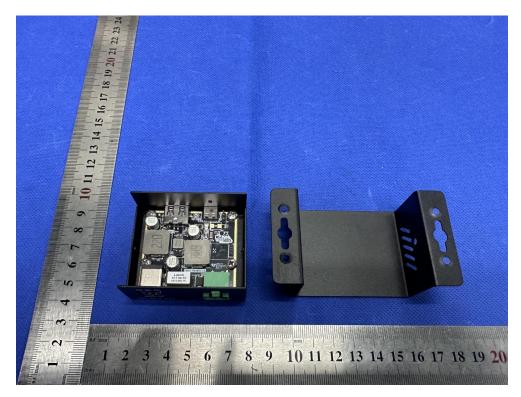
The EUT is powered by host, no requirements for this item.

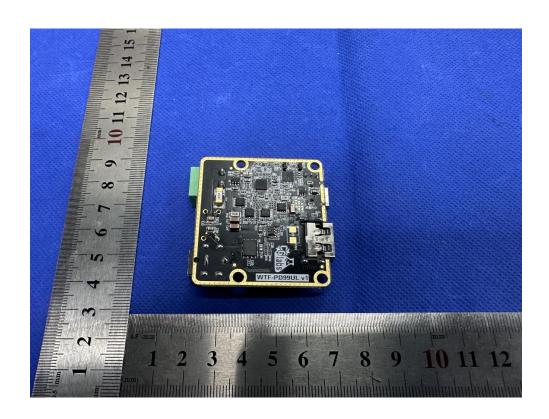
Test report E-mail: info@sict-lab.com.cn Web: www.sict-lab.com.cn Page 33 of 38

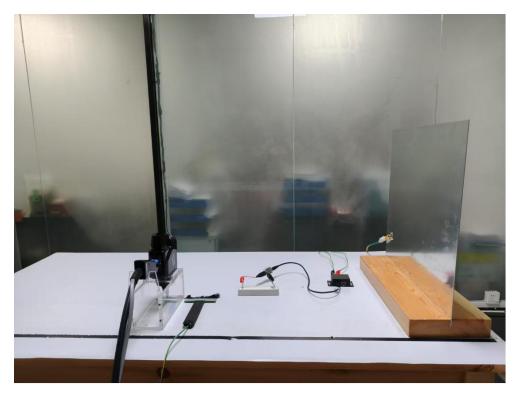



13. EUT PHOTOGRAPHS









14. EUT TEST SETUP PHOTOGRAPHS

**** END OF REPORT ****

Test report E-mail: info@sict-lab.com.cn Web: www.sict-lab.com.cn Page 38 of 38